
C++ Macros

Marco Gallotta

28 February, 2009

1 Macros

• Define macro MACRO using #define MACRO on the top of your code.

• Can also #define VERBOSE 2 and then use VERBOSE like a constant.

• Code between #IFDEF MACRO and #ENDIF is only included if MACRO is defined.

• #IFNDEF MACRO is similar, but checks if MACRO is not defined.

• #define MIN(a, b) (a < b ? a : b) defines a macro “function”. All occurrences of
MIN(1, 2) or the likes are replaced with (1 < 2 ? 1 : 2).

• All above operations are performed at compile time, before the code is actually compiled.

Define the macro NDEBUG before #include <cassert> to disable assertions when submitting.

#define NDEBUG
#include <cassert>
int main() {
// foo
assert(N > 0); // we expect N > 0, so we assert that this is indeed true

#IFNDEF NDEBUG
cerr << "debugging foo" << endl;

#ENDIF
}

Useful macro to print the file, line number, variable name and its value:

#include <cstdio>
#define PRINT(a, fmt) printf("%s:%u: %s=" fmt "\n", __FILE__, __LINE__, #a, a)
int main() {
int num = 1;
PRINT(num, "%d");

}

1


